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Abstract

The preconditioned conjugate gradient (PCG) method is an

effective means for solving systems of linear equations where

the coefficient matrix is symmetric and positive definite.

(tThe incomplete LDL factorizations are a widely used class of

preconditionings, including the SSOR, Dupont-Kendall-Rachford,

Generalized SSOR, ICCG(O), and MICCG(O) preconditionings. The

efficient implementation of PCG with a preconditioning from

this class is discussed.

9

/"I I

Efficient Implementation of a Class
of Preconditioned Conjugate Gradient Methods

_.( IStanley C., Eisenstat

(/Research Rep~rt .0185

August 198()'

This research was supported in part by ONR Grant IN0OI14-76-C-02774

A ; )I'~ r o d,( f r pu v lie ru1.,uw..,A ., Dlbudon Un;LW-le!



W1

1. Introduction

Consider the system of N linear equations

(1) A x a b

where the coefficient matrix A is symmetric and positive definite. When A is

large and sparse, the preconditioned conjugate gradient (PCG) method is an

effective means for solving (1) [2, 4, 5, 9, 13]. Given an initial guess x

we generate a sequence {xk} of approximations to the solution x as follows:

(2a) pO - b -A

(2b) Solve Mr - r0
_Access to". - .r ,i

FOR k - 0 STEP 1 UNTIL Convergence DO yesS r..jDTIC T.*,?
SUnanno'n,-*,;,. 0

(2c) ak = (rk,r) I (Pk,APk) Unannol"c ' ,.l-k ks ( k'A~ )i t, if ...... .5e

(2d) Xk+l x k a 'k Dstrlb*,,.

Av all C

(2e) rk l = rk - akAPk D.st

(2f) Solve Mrj+1 * rk+l

(2S) bk (rk, ,r;+1 ) / (r ,r')

(2h) Pk.l = r.,1 * bkPk

The effect of the preconditioning matrix M is to increase the rate of

convergence of the basic conjugate gradient method of Restenes and

Stiefel 1111. The number of multiply-adds per iteration is just 5N, plus the

number required to form Apk, plus the number required to solve Mri - rk.
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One widely used class of preconditionings are the incomplete LDLt

factorizations

(3) M - (B+L) B-1 (B+L)t

where A a L+D+Lt, L is strictly lower triangular, and D and D are positive

diagonal. This class includes the SSOR [9], Dupont-Kendall-Rachford [7],

Generalized SSOR [1), ICCG(O) [13], and HICCG(O) [10] preconditionings.

Letting NZ(A) denote the number of nonzero entries in the matrix A, a

straight-forward implementation of PCG with a preconditioning from this

class 1would require 6N+2NZ(A) multiply-adds per iteration.
2

In this brief note, we show how to reduce the work to 8N+NZ(A)

multiply-adds, asymptotically half as many as the straight-forward

implementation.3 We give details in Section 2, and consider some

generalizations in Section 3.

2. Implementation

The linear system (1) can be restated in the form

1 Writing M as (L)(I+-7Lt), we solve Mrj - rk by solving the triangular

systems (B+L)tk - r k  (I+D'Lt )r - tk.

2 2N (respectively, N) multiply-adds can be saved by symetrically scaling

the problem to make B - I (respectively, D - I).

3 A similar speedup for pairs of linear iterative methods is given in (6].
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(4) [(B+L)-I A (B+L)- t ] I(D+L)t x] * [(D+L)-  b]

or

(5) -

But applying PCG to (I) with M - (B+L)D-(D+Lt) is equivalent to applying PCG

to (5) with M - and setting x = (D+L)tx.4  If we update x instead of

at each iteration, algorithm (2) becomes:

(6a) p0  r0
=  - Ax0

(6b) Compute r Dr0[

FOR k 0 STEP I UNTIL Convergence DO

(6c) 8k k'r / (pk'Apk)

(6d) x+l x k + 'k(D+L )-tk

(6e) Tk+l = k - ak Pk

(6g) Compute r kl Dk+1

4 Both are equivalent to applying the basic conjugate gradient method to

the preconditioned system

1 a [5112(B+L)- A (B+L)tDl/2 [DI 2(D+L)t x) - [511 2(D+L)-I b] -

(see f41, pp. 58-59).
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(6g) bk " ( k ] r ~ ) / (r k ' )I

(6h) Pk+l r'+, "

APk can be computed efficiently by taking advantage of the following

identity:

(7) APk - (D+L)-l [(B+L) + (B+L)t - (2D-D)J (D+L)- t ;k

- (B+L)-t~k + (B+L)-' ['k - K(D+L)-tpk]

where K * 2D-D. Thus

(Ba) tk (+L)t

(8b) +k =  * (D+L)-l - Ktk)

which requires 2N+NZ(A) multiply-adds. tk can also be used to update xk in

(6d), so that the total cost for each PCG iteration is just SN+NZ(A)

multiply-adds,5 versus 6N+2NZ(A) for the straight-forward implementation.

3. Generalization.

The approach presented in Section 2 extends imediately to

preconditionings of the form

5 Again, 3N multiply-adds can be saved by symetrically scaling the problem

so that D - I.
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(9) M- (B+L) 1-1 (B+L)t

where S is positive diagonal. Moreover, if we take K m DaDt-D in (7) and

(8), then D need not be diagonal or even symetric. In this case, D would

reflect changes to both the diagonal and off-diagonal entries of A in

generating an incomplete factorization. If we assume that only the nonzero

entries of A are changed, i.e., that (K)ij is nonzero only if (A)ij is

nonzero, then the operation count is 7N NZ(A) NZ(K).

Another application is to preconditioning nonsymnetric systems. Let

(10) M - (5+L) S-1 (DU)

be an incomplete LDU factorization of a nonsymmetric matrix A, where

A a L+D.+U, L (respectively, U) is strictly lower (respectively, upper)

triangular, and D and S are diagonal. Then a number of authors have proposed

solving the linear system Ax a b by solving the normal equations for one of

the preconditioned systems

(Ia) A ( L) A (5.u) - ] [(B.+U) x) - lI (B,.L) - b-

(see 1121) and

(1ib) A X a [(B5U) "£ 1 (B+L) "1 A] x - f(B.) " 5 (BL)-1 b] G

(see [14, 31). 12i can be computed as

(12) A - (2 u)" I + (BL)'(DsU-B) )

in 4N NZ(L).2NZ(U) multiply-adds, whereas Alp can be computed as

i
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(13a) = (B+U) 1;

(13b) 9 1 + (B+L) -1 O -(-D)i)]

in 4N+NZ(L) NZCU) multiply-adds. Thus the first approach would be more

efficient per iteration, although more iterations might be required to

achieve comparable accuracy [141.6
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